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Figure 1: Steps of our sky imager based forecast.

for validation. GHI is measured with a ventilated pyra-
nometer from EKO (MS80) next to the camera with a
temporal resolution of 1 s.

For both sites all instruments are cleaned weekly. The
irradiance data is filtered using a quality control proce-
dure based on the Baseline Surface Radiation Network
(BSRN) recommendations (LONG and DuTTON, 2002).
Besides local measurements, clear sky irradiance values
are used in this study to derive the clear sky index. For
calculating clear sky irradiance, we use the clear sky
model introduced by DUMORTIER (1995) with the tur-
bidity described by DUMORTIER (1998) and BOURGES
(1992).

An overview of the datasets used in this study is
given in Table 1. Model development and detailed eval-
uations were done using data from the Freiburg site.
For the cloud detection algorithm two datasets were cre-
ated, one for optimization (CloudDecision1) and one for
validation (CloudDecision2 — in brackets). They con-
sist of 28 (16) images selected carefully to give a good
representation of cloud types and zenith angles. Cloud
types of the images were assigned manually. Addition-
ally, clear sky libraries were created from clear sky im-
ages in temporal proximity for each data set. In these
images, 1068 (569) randomly selected pixels were clas-
sified manually into the categories cloudy or clear. From
the first set of images an additional dataset containing
289 pixels within a radius of 20° around the sun was cre-
ated (CloudDecisionSun) to validate the cloud detection
in the circumsolar region.

For analysing the shadow and irradiance forecasts,
a dataset from summer and autumn 2018 is used. The
dataset contains 46 days and covers the periods 13 June
2018-5 July 2018 and 23 August 2018-14 September
2018. Only sun zenith angles up to 75° are analysed.

Forecasts were started every 5min with a maximum
forecast horizon of 15min and a resolution of 20s.
We choose these values to get a sufficient number of
forecasts for validation and keep the computation time
acceptable. This dataset (ForecastFreiburg) includes the
sky images, calculated and predicted cloud masks, time
series of shadow forecasts for the site of the camera and
irradiance measurements and forecasts.

Additionally, we created a cloud shadow reference
time series based on this dataset. With a cloud shadow
reference time series, we mean a binary forecast cre-
ated from measured GHI which is supposed to have the
change from cloud to clear sky at exactly the right time.
We used this dataset to validate our shadow forecast and
as a basis to develop the irradiance algorithm in Sec-
tion 6. For simplification we call a cloud shadow at the
measurement site “cloudy”, and no cloud shadow at the
measurement site “clear” in the following. The cloud
shadow reference time series is derived from measured
GHI values by calculating clear sky index values and
applying a threshold of £* = 0,9 to distinguish between
cloudy (k* < 0.9) and clear (k* > 0.9) as illustrated
in Fig. 2. This threshold was chosen from visual analy-
ses of time series and histograms of the clear sky index
(see also Fig. 7). It is a balance between detecting thin
clouds as clear (threshold too low) and detecting periods
with high turbidity as cloudy (threshold too high). Ev-
idently, applying a simple threshold is a simplification
considering e.g. very thin clouds. Approaches for detect-
ing clear sky periods from the literature like described
in TINA etal. (2012) or RENO and HANSEN (2016) are
not suitable for our purpose here. They are designed to
find stable clear sky periods using criteria like moving
averages and variability information. They are not de-
signed to detect short periods without cloud shadows
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Table 1: Overview of the used datasets.
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Dataset Time range Overview  Count Purpose

CloudDecision1 May 2017 28 images 1068 classified pixels ~ Optimization of the cloud decision algorithm
CloudDecisionSun " " 289 classified pixels Validation of the cloud decision in circumsolar region
CloudDecision2 June 2017 16 images 569 classified pixels Validation of the cloud decision algorithm
ForecastFreiburg June-Sept. 2018 46 days 5908 forecasts Development of the forecasting algorithm
ForecastBlaustein ~ May—June 2019 61 days 9410 forecasts Validation of the forecasting algorithm
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Figure 2: Top: time series of k* from GHI measurements; a threshold
of k* = 0.9 (orange line) is applied to distinguish between clear
(yellow) and cloud shadow (white). Bottom: normalised histograms
and KDE for cloudy (k* < 0.9, blue) and clear sky (k* > 0.9, orange)
for a forecast starting at 1030 UTC from the above time series; Each
distribution and corresponding histogram are normalised separately.

on a partly cloudy sky with fast fluctuations between
clear and cloudy, which is essential for our method. We
choose to use a method based on GHI, not on the di-
rect and diffuse components, since these are not avail-
able for many measurement sites. With our method, we
get a good indication on the presence of cloud shadows
at the camera position and the timing of the change be-
tween cloudy and clear for many conditions.

As a completely independent validation dataset we
use measurements and forecasts from the station in
Blaustein (ForecastBlaustein). The dataset contains fore-
casts and measurements for May and June 2019. These
forecasts have a resolution of 10s.

Figure 3 shows a comparison of the cloud situa-
tions of the two datasets ForecastFreiburg and Forecast-
Blaustein based on the evaluation of the cloud masks
derived with the algorithm described in Section 4. The
dataset ForecastFreiburg (ForecastBlaustein) contains
30.4 % (25.7 %) clear, 45.4 % (38.5 %) partly cloudy and
24.2 % (35.8 %) overcast situations. Here, clear is de-
fined as less than 5 % cloudy pixels, overcast as more
than 95 % cloudy pixels and partly cloudy as every-
thing in-between. The dataset ForecastBlaustein con-
tains more overcast situations and less clear and partly
cloudy situations than the dataset ForecastFreiburg.
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Figure 3: Histogram of the calculated cloudiness derived from the
improved cloud masks as described in Section 4. Cloudiness is de-
fined here as the fraction of pixels classified as cloudy: O corresponds
to cloudless sky, 1 corresponds to a completely cloudy sky. Datasets
ForecastFreiburg and ForecastBlaustein.

Table 2: Contingency table.

Model

Observations  Clear

Clear
Cloudy

Cloudy

false alarms
hits

true negatives
misses

3 Error metrics

To validate the binary classification of the cloud fore-
casts, a contingency table is computed as shown in Ta-
ble 2. This table is used to calculate the accuracy, defined
as the number of correct classified samples divided by
the total number of samples N.

hits + true negatives

Accuracy = N

(3.1)

For the validation of the irradiance forecasts p;
against the measurements m; the Root Mean Square Er-
ror (RMSE) and the Mean Absolute Error (MAE) is cal-
culated.

SN o(pi = m)?
N

>N lpi = mi|

N

RMSE = 3.2)

MAE = 3.3)
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The skill of a forecast evaluates its performance in
comparison to a trivial reference forecasts for a given
score (here accuracy or RMSE) as defined e.g. in SEN-
GUPTA etal. (2015). It is calculated from the score of the
modelled forecast (S r.), the score of a reference fore-
cast (S rer) and the score of a perfect forecast (S perf).

Sfc _Sref

Skill =
ref — S perf

(3.4)

S perf 1s one for the accuracy and zero for the RMSE.
The skill has positive values if the score of the modelled
forecast is better than the score of the reference forecast.
It has a maximum value of 1.

As reference we use a persistence forecast derived
from the last measurement. For the cloud shadow fore-
casts, we use persistence of the cloud shadow reference
time series derived from measurements. For the irradi-
ance forecasts, we combine persistence of the clear sky
index with the clear sky irradiance to account for the
diurnal cycle as defined e.g. in SENGUPTA etal. (2015),
where 1 is the forecast valid time and ¢, is the start time
of the forecast.

GHIpers(t) = GHlgjear (1) - k*(tO) (3.5)

4 Cloud detection

For the calculation of the cloud masks the algorithm de-
veloped by ScHmIDT etal. (2016) is adapted. The algo-
rithm is based on the evaluation of the red-to-blue-ratio
of the cloud image pixels in relation to a reference clear
sky image. Clear sky libraries were created manually for
the different data sets described in Table 1. From the
clear sky library, we automatically select the image with
the smallest sun angle difference between the cloudy and
the clear sky image. The algorithm contains three pa-
rameters that were adapted to our camera using the man-
ually classified pixels from the dataset CloudDecision].
The parameters were optimized simultaneously by max-
imising the accuracy (Eq. 3.1) with an automated proce-
dure using systematic parameter variation.

The contingency tables of the training and the valida-
tion dataset are summarized in Table 3 and Table 4, the
calculated accuracy can be found in Table 5. In the in-
dependent validation dataset CloudDecision2, 90.3 % of
the pixels are classified correctly. Using the cloud type
classification of the images we find that many errors oc-
cur for cirrus situations. The pixels of cirrus clouds are
hard to classify into cloudy and clear sky, since they
have no sharp boundaries like other cloud types. Ex-
cluding four cirrus images, 96.5 % of the pixels could
be classified correctly. Comparing the contingency ta-
bles (Table 3, Table 4) we see that this improvement is
mainly caused by a reduction of false alarms, i.e. pixels
classified wrongly as cloudy.

Due to the high saturation at the sun position and in-
tense forward scattering in the circumsolar region, the

A. Dittmann etal.: Sky imager based irradiance forecasting

105

Table 3: Contingency tables for the cloud decision model for dif-
ferent datasets and of manually classified pixels using all available
images.

Manual classification Model
CloudDecisionl Clear Cloudy
Clear 532 31
Cloudy 21 479
CloudDecision2 Clear Cloudy
Clear 245 43
Cloudy 12 269
CloudDecisionSun Clear Cloudy
Clear 164 67
Cloudy 7 152
CloudDecisionSun improved  Clear  Cloudy
Clear 166 65
Cloudy 4 155

Table 4: Contingency tables for the cloud decision model for differ-
ent datasets of manually classified pixels excluding cirrus images.

Manual classification Model
CloudDecisionl Clear Cloudy
Clear 286 7
Cloudy 21 475
CloudDecision2 Clear Cloudy
Clear 151 4
Cloudy 11 257
CloudDecisionSun Clear Cloudy
Clear 120 10
Cloudy 7 152
CloudDecisionSun improved  Clear  Cloudy
Clear 120 10
Cloudy 4 155

cloud segmentation near the sun is known to be diffi-
cult (YANG etal., 2014; URQUHART et al., 2013). For val-
idating the performance of our algorithm in the circum-
solar region we created the dataset CloudDecisionSun
from the images used for the CloudDecisionl dataset,
containing only pixels in the circumsolar region. Ex-
cluding again cirrus situations (seven out of 28 images)
we find that the accuracy in the circumsolar region of
94,1 % is lower than in the evaluation of the whole im-
age (96.4 %).

Since the circumsolar region is of special importance
for the forecasts, a novel procedure was developed for
our forecasting system to correct the circumsolar region
of the cloud masks. The procedure is based on real-time
GHI measurements and pattern recognition in the cloud
masks. There are two cases of false cloud classification
in the circumsolar region: 1. The optical thickness of a
cloud in front of the sun is not high enough to conceal
the sun completely. It is classified as clear sky in a circle
around the sun (Fig. 4, top). This occurs for nearly all
cloud types, not only for cirrus clouds. 2. In clear sky
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Table 5: Accuracy of the cloud decision for different datasets of manually classified pixels using all images and excluding cirrus images.

Dataset CloudDecisionl  CloudDecision2  CloudDecisionSun  CloudDecisionSun improved
All images 95.1 90.3 81.0 82.3
Excluding cirrus images 96.4 96.5 94.1 95.2

Figure 4: Improvement of the cloud mask in the circumsolar region;
left: original image; middle: original cloud mask (cloud=white);
right: improved cloud mask; the upper case shows a not detected
cloud in the circumsolar region. The lower case shows a false de-
tected ring around the sun.

situations, often a ring shaped cloud is detected around
the sun as well as sparkles of clouds due to dirt on the
camera dome (Fig. 4, bottom). To identify the first case,
the cloud shadow reference time series derived from
GHI measurements at the camera position is compared
to the cloud classification for the sun position. If the
cloud shadow reference indicates a cloud shadow, a
circle detection (YUEN etal., 1990) is applied on the
cloud mask to detect the cloud hole in the circumsolar
region. This circle is then filled as cloud. The second
case is identified if the cloud shadow reference shows
clear sky. Using circle and object detection, clouds that
form a ring around the sun and very small clouds in
the circumsolar region are recognised and then removed.
Examples of original and corrected cloud masks for the
two cases are shown in Fig. 4.

This algorithm was developed using a subset of the
ForecastFreiburg dataset and evaluated on the Cloud-
DecisionSun dataset. From the 21 cloud masks (without
cirrus situations), nine show a ring around the sun. Six
of these cloud masks are corrected. A wrong cloud hole
is found in six cloud masks. Three of them could be cor-
rected. The validation of the corrected cloud masks with
the classified pixels in the circumsolar region results in
95.2 % of correctly classified pixels. The contingency ta-
ble (Table 4) shows that due to the correction procedure
the number of missed cloudy pixels is reduced by three.
The enhanced cloud masks have a big effect on the cloud
decision forecasts (see Section 5).

5 Cloud and shadow forecasts

In order to create irradiance forecasts from cloud masks
those masks have to be extrapolated into the future. Two
consecutive images are used to compute an optical flow,
which can then be used to compute cloud mask fore-
casts. The field of optical flow research is very active
with new state-of-the-art methods being published ev-
ery year'. We choose to use the DeepFlow algorithm by
WEINZAEPFEL et al. (2013) also used in DITTMANN et al.
(2018) which was state-of-the-art in 2013 and is suit-
able for large displacements, which is necessary for fast
moving clouds. The DeepFlow algorithm is applied to
the undistorted images. For undistortion the calibration
parameters of the camera lens are needed which were
computed from images of a chessboard. For the imple-
mentation we use OpenCV (Brapski, 2000) for both the
DeepFlow as well as the fisheye camera module.

Cloud mask pixels (cm;(x,y)) are moved according
to the optical flow using inverse mapping:

M pr(X,y) = cm(—u(x, y) - App + X, =V(X,y) - Aps +Y)
(5.1

For each forecast step, the optical flow components u
and v are multiplied with the factor A,, that is calculated
as the forecast horizon At divided by the time difference
between the images used for flow calculation (here 10 s).

We found that applying smoothing on both the flow
as well as the cloud mask yields better performance.
Time series of shadow forecasts for the camera location
are derived from the resulting cloud mask forecasts by
evaluating the pixel corresponding to the position of
the sun, because it determines whether the sun will be
seen by the camera. The pixel position of the sun in the
cloud mask is calculated using the sun angles and the
calibration parameters of the camera lens.

We evaluate the shadow forecasts against the cloud
shadow reference time series derived from measure-
ments, using the dataset ForecastFreiburg. Fig. 5 shows
the skill of the shadow forecasts using the original cloud
masks and using the cloud masks with enhanced sun
region. The correction considerably improves the fore-
casts, especially for small forecast horizons where there
is no skill before. Since the circumsolar region is closest
to the pixel that shades the camera, the probability that
the pixels in the circumsolar region move over the sun
pixel is higher than for pixels further away from the sun
and small forecast horizons are affected more strongly
by the correction. Now, the cloud decision forecasts have
a positive skill from a forecast horizon of 1 min of up
to 12 %.



